Development of C4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE).

نویسندگان

  • A B Cousins
  • N R Adam
  • G W Wall
  • B A Kimball
  • P J Pinter
  • M J Ottman
  • S W Leavitt
  • A N Webber
چکیده

The developmental pattern of C4 expression has been well characterized in maize and other C4 plants. However, few reports have explored the possibility that the development of this pathway may be sensitive to changes in atmospheric CO2 concentrations. Therefore, both the structural and biochemical development of leaf tissue in the fifth leaf of Sorghum bicolor plants grown at elevated CO2 have been characterized. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) activities accumulate rapidly as the leaf tissue differentiates and emerges from the surrounding whorl. Rubisco was not expressed in a cell-specific manner in the youngest tissue at the base of the leaf, but did accumulate before PEPC was detected. This suggests that the youngest leaf tissue utilizes a C3-like pathway for carbon fixation. However, this tissue was in a region of the leaf receiving very low light and so significant rates of photosynthesis were not likely. Older leaf tissue that had emerged from the surrounding whorl into full sunlight showed the normal C4 syndrome. Elevated CO2 had no effect on the cell-specific localization of Rubisco or PEPC at any stage of leaf development, and the relative ratios of Rubisco to PEPC remained constant during leaf development. However, in the oldest tissue at the tip of the leaf, the total activities of Rubisco and PEPC were decreased under elevated CO2 implying that C4 photosynthetic tissue may acclimate to growth under elevated CO2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations.

We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overal...

متن کامل

Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny

Rising atmospheric carbon dioxide (CO2) concentration and temperaturewill influence photosynthesis, growth andyield of agronomic crops.To investigate effects of elevatedCO2andhigh temperature on leaf gas exchanges, activities of Rubisco and phosphoenolpyruvate carboxylase (PEPC) and growth of grain sorghum (Sorghum bicolorL.Moench), plants were grown in controlled environments at day-time maxim...

متن کامل

Free-air CO2 enrichment effects on the energy balance and evapotranspiration of sorghum

Increasing atmospheric carbon dioxide (CO2) likely will affect future water requirements of most plants, including agricultural crops. This research quantifies such effects on the energy balance and evapotranspiration (ET) of sorghum (Sorghum bicolor (L.) Möench, a C4 grain crop) using a residual energy balance approach. During the summer and autumn of 1998 and 1999, sorghum was grown under fre...

متن کامل

Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought.

While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO2 concentration ([CO2]) is predicted to enhance yield and offset these detrimental factors. However, C4 photosynthesis is usually saturated at current [CO2] and theoretically should not be stimulated under elevated [CO2]. Nevertheless...

متن کامل

Do the Rich Always Become Richer? Characterizing the Leaf Physiological Response of the High-Yielding Rice Cultivar Takanari to Free-Air CO2 Enrichment

The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candida...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 54 389  شماره 

صفحات  -

تاریخ انتشار 2003